Stability of an Interconnected System of Euler−bernoulli Beam and Heat Equation with Boundary Coupling

نویسندگان

  • Jun-Min Wang
  • Miroslav Krstic
چکیده

We study the stability of an interconnected system of Euler−Bernoulli beam and heat equation with boundary coupling, where the boundary temperature of the heat equation is fed as the boundary moment of the Euler−Bernoulli beam and, in turn, the boundary angular velocity of the Euler−Bernoulli beam is fed into the boundary heat flux of the heat equation. We show that the spectrum of the closed-loop system consists only of two branches: one along the real axis and the another along two parabolas symmetric to the real axis and open to the imaginary axis. The asymptotic expressions of both eigenvalues and eigenfunctions are obtained. With a careful estimate for the resolvent operator, the completeness of the root subspaces of the system is verified. The Riesz basis property and exponential stability of the system are then proved. Finally we show that the semigroup, generated by the system operator, is of Gevrey class δ > 2. Mathematics Subject Classification. 93D15, 93C20, 35P20. Received January 23, 2013. Revised January 4, 2014. Published online June 19, 2015.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis of Non-Local Euler-Bernoulli Beam with Exponentially Varying Cross-Section Resting on Winkler-Pasternak Foundation

In this paper, linear stability analysis of non-prismatic beam resting on uniform Winkler-Pasternak elastic foundation is carried out based on Eringen's non-local elasticity theory. In the context of small displacement, the governing differential equation and the related boundary conditions are obtained via the energy principle. It is also assumed that the width of rectangle cross-section varie...

متن کامل

Three-dimensional Vibration Suppression of an Euler-bernolli Beam via Boundary Control Method

In this paper, the general governing equations of three-dimensional vibrations of an Euler-Bernoulli Beam under influences of system dynamics are derived by the Hamiltonian method. Then two fundamental cases of a cantilever beam and a rotating beam are considered. The conventional methods for vibration suppression debit to expenses and make new problems such as control spillover because they ar...

متن کامل

Nonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation

The aim of this study is the investigation of the large amplitude deflection of an Euler-Bernoulli beam subjected to an axial load on a viscoelastic foundation with the strong damping. In order to achieve this purpose, the beam nonlinear frequency has been calculated by homotopy perturbation method (HPM) and Hamilton Approach (HA) and it was compared by the exact solutions for the different bou...

متن کامل

A Size-dependent Bernoulli-Euler Beam Formulation based on a New Model of Couple Stress Theory

In this paper, a size-dependent formulation for the Bernoulli-Euler beam is developed based on a new model of couple stress theory presented by Hadjesfandiari and Dargush. The constitutive equation obtained in this new model, consists of only one length scale parameter that is capable of capturing the micro-structural size effect in predicting the mechanical behavior of the structure. Having on...

متن کامل

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015